Math 4650 - Homework # 5 Continuity

- 1. For each of the following, use the ϵ - δ definition of continuity to prove that the given f is continuous at the given a.
 - (a) f(x) = 2x + 1 at any $a \in \mathbb{R}$
 - (b) $f(x) = x^4$ at any $a \in \mathbb{R}$ [Hint: Use $x^4 - a^4 = (x^2 + a^2)(x^2 - a^2) = (x^2 + a^2)(x - a)(x + a)$]
 - (c) $f(x) = x^2 + x$ at any $a \in \mathbb{R}$
 - (d) $f(x) = \frac{1}{x^2}$ at a > 0.
- 2. Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ and $a \in D$. Prove that f is continuous at a if and only if $\lim_{n \to \infty} f(x_n) = f(a)$ for every sequence (x_n) contained in D with $x_n \to a$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at $a \in \mathbb{R}$. Prove that if f(a) > 0, then there exists $\delta > 0$ such that f(x) > 0 for all x where $|x a| < \delta$.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on all of \mathbb{R} . Let $S = \{x \mid f(x) = 0\}$ be the set where f is equal to zero. Suppose that S is not the empty set. Prove that if (x_n) is a sequence of points contained in S and $x_n \to L$, then f(L) = 0.
- 5. Suppose that $f: D \to \mathbb{R}$ is continuous on $D \subseteq \mathbb{R}$. Further suppose that $g: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and that the range of g is contained in D. Suppose that $a \in A$ is a limit point of A and $\lim_{x \to a} g(x) = L$ with $L \in D$. Prove that

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$$

- 6. Prove the following.
 - (a) Prove that f(x) = x is continuous for all $d \in \mathbb{R}$.
 - (b) Let α be a constant real number. Prove that the constant function $f(x) = \alpha$ is continuous for all $d \in \mathbb{R}$.
 - (c) Prove that polynomials are continuous for all $d \in \mathbb{R}$.